

PROTOCOL 4/2018

Dielectric absorption tests at room temperature within the frequency range 10^{-1} Hz - 10^{7} Hz for ADR Technology screening wall paint

Client: ADR Technology Stanisław Wosiński

Authors: Dr Hab. Ewa Markiewicz

Dr Andrzej Hilczer

Test report authorised by: Dr Hab. Bartłomiej Andrzejewski, prof. IFM PAN

- **1. Research aim:** to calculate the dielectric absorption window for ADR Technology screening wall paint in the frequency range of 10-1 Hz 107 Hz at room temperature. The paint samples together with the electrodes were provided by ADR Technology Stanisław Wosiński.
- 2. Measuring methodology: Dielectric material is characterized by relative complex dielectric permittivity: $\varepsilon^* = \varepsilon' j\varepsilon''$, (1)

where 'relative' refers to the normalization by the permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m. Dielectric losses:

$$\varepsilon'' = \varepsilon_p'' + \frac{\sigma_{dc}}{\varepsilon_0 f} \tag{2}$$

are sum of dielectric polarization losses ε_p'' and losses due to the Ohmic conduction $\frac{\sigma_{dc}}{\varepsilon_0 f}$ (σ_{dc} denotes the dc conductivity and f is the frequency of measuring field). The dielectric permittivity ε^* as well as the dielectric loss tangent:

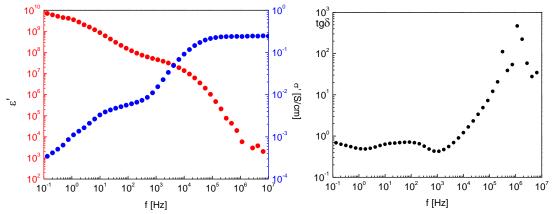
$$\tan \delta = \frac{\varepsilon''}{\varepsilon'} = \frac{\left(\varepsilon''_p + \frac{\sigma_{dc}}{\varepsilon_0 f}\right)}{\varepsilon'} \tag{3}$$

are both dependent on the measuring frequency. In the frequency range from 1×10^{-1} Hz to 1×10^{7} Hz the dielectric properties should be measured for samples filling a measuring condenser (usually a parallel plate measuring condenser).

3. Apparatus and Experiment: Dielectric response of the samples was studied using an Alpha-A High Performance Frequency Analyzer (Novocontrol GmbH). Samples, with the composites filling a parallel plate condenser, ~2 mm thick with metal electrodes in form of discs with diameter of 15.5 mm, were fixed to a sample holder. The measurements were performed at room temperature (293 K). The impedance Z' (from $10^{-3} \Omega$ do $10^{15} \Omega$), capacitance C ($10^{-15} F$ do 1 F) and the tangent of the dielectric loss angle $tan\delta$ were measured in the interval of 8 decades of frequency ($1 \times 10^{-1} Hz$ to $1 \times 10^{-1} Hz$) at the oscillation voltage of 1 V. The actual part of the dielectricity of the sample was calculated from the dependence:

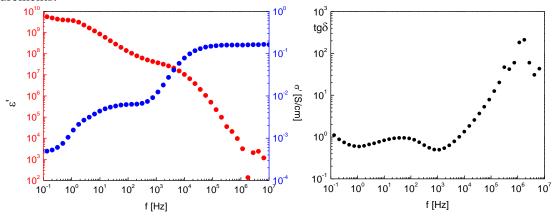
$$\varepsilon' = \frac{d}{\varepsilon_0 S} C,\tag{4}$$

where d - is the thickness of the sample (in m), S is the surface of the sample (in m2), C - is its capacity (in F) and $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m) is the dielectric constant of the vacuum. The imaginary part ε' of the composite dielectricity of the sample is:


$$\varepsilon'' = \varepsilon' \tan \delta. \tag{5}$$

The measured values were stored and the values characterizing the sample were calculated using WinDETA impedance analysis software and WinFit V 3.2.

4. Results: Two series of dielectric measurements, 4 measurements for each were taken of the ADR Technology shielding paint.


Series I

Measurements were made in an open space with a relative humidity of $\sim 31\%$ at room temperature (293 K) for the sample provided by ADR Technology. The results presented are the average of 3 measurements.

Series II

Measurements were made in an open space with a relative humidity of $\sim 31\%$ at room temperature (293 K) for the sample provided by ADR Technology. The results presented are the average of 3 measurements.

5. Summary:

- i) ADR Technology shielding wall paint shows high ε ' 'values in the entire frequency range from 0.1 Hz to 10 MHz with a plateau in the range of 100 Hz 10 kHz.
- ii) ADR Technology shielding wall paint has two dielectric absorption bands with $\tan \delta_E \approx 1~$ at 100 Hz and with $\tan \delta_E \approx 100$ at ~5 MHz.